Teresa MacDonald

Friday, May 20, 2011

Engaging College Students to Support Science Learning

summer camp

Aquatic Biology summer camp

A recent Science article reported by the New York Times (http://www.nytimes.com/2011/05/13/science/13teach.html?_r=5&ref=science&) presented the findings of a study that compared the impact of a traditional lecture format to a more interactive approach to teaching in a large college physics class. The latter approach included soliciting students’ ideas and providing feedback, small group work, and in-class activities — and resulted in improved student learning, attendance and engagement.

The foundation of the ‘deliberate practice’ model and related ideas in educational research is that learners have their own ideas about how the world works, and that we can support learning by actively exploring and connecting with these existing ideas through meaningful, engaging experiences. In short, students are active participants in their learning.

On a small scale, our Aquatic Biology summer camp could be viewed through the lens of ‘deliberate practice.’ It involves small group activities and provides opportunities for participants to practice their knowledge and skills. Youth are introduced to basic ideas about water quality and assessment techniques, exploring these techniques through a series of simple experiments, and then collecting and recording data in the field. We then discuss our findings.

The hitch with a more interactive and engaged approach is that it takes a lot of time. Consciously and deliberately designing your teaching around such strategies at any level is time-consuming, although it gets easier with experience. For example, creating field journals that are accessible and usable by 8 to 11 years olds takes thought and planning.

Many years ago as a graduate student in Canada I was involved with a Women in Science organization which conducted a study on the impact of a ‘female-friendly’ introductory college chemistry curriculum which included in-class activities and problem-solving with real-world connections. The result — test performance was on par with other sections, but student interest and motivation were significantly higher in the study group. It turned out that such strategies were not only ‘female-friendly’, but were in fact ‘student-friendly.’

An important finding from the Science study and others is that more engaging teaching strategies not only improve traditionally tested outcomes but also enhance student confidence, interest and motivation — critical factors in thinking about life-long learning and career choices. They can also support informed decision making about science/technology issues.

Museums and other informal science institutions are familiar with this approach as they seek to connect with visitors through their exhibits and programming. Such experiences support factual and conceptual understanding, but perhaps most powerfully influence affective elements related to learning such as engagement and motivation about science. Enhancing content knowledge and understanding as well as supporting an interest in science without the incentive (or disincentive) of a test is a powerful impact!

In a time with mounting pressures and decreasing resources, it can seem daunting to attempt such a course. But there are resources to help. KU’s Center for Teaching Excellence provides resources and workshops to support and enhance faculty teaching. A surprising success story comes from Quarked! Adventures in the Subatomic Universe, a collaborative KU physics education project that includes a website with videos and games. Originally targeted at youth 7 to 12, teachers and the general public, several physics faculty have found it useful for their classes to provide an overall conceptual framework for particle physics and the mechanisms involved.

Thoughtfully planned and informed learning experiences are time-consuming, but well worth it and become easier with time and practice. If a job is worth doing, it is worth doing well.

Friday, February 11, 2011

Communicating Evolution

collecting insects

A recent New York Times article summarized a national survey of high school biology teachers published in Science. Its findings include that only 28 percent of teachers follow recommendations from the National Research Council on teaching evolution, 13 percent advocate creationism in their classrooms, the remaining 60 percent of teachers neither endorse evolution nor any alternate non-scientific explanations.

As the Director of Education at a natural history museum in Kansas, I was forwarded this article many times by friends and colleagues. Sadly, the results of this study are also not surprising; they closely parallel previous studies and my own professional experience. There is no question that evolutionary thinking is a fundamental concept that forms the foundation of modern biological understanding and current research, a point that has been emphasized by evolutionary scientists and educators. Nonetheless, the situation remains relatively static.

The story also illustrates a couple of important points. Firstly, it is not a Kansas thing — the absence of adequate of evolution teaching in schools (and even advocating non-scientific explanations) is a pervasive problem in the United States — and while some regions may seem more obvious or extreme on this issue, this is a national problem. Secondly, it highlights the crucial role that natural history museums and other informal science institutions play in communicating science to the public.

Museums play an important role in teaching evolution. Reports indicate that one in every five adults in the US has visited a museum or science center at some point in their life, which means that informal science institutions have a critical role in communicating evolution to the public. For some visitors, a museum will be their only opportunity to learn about evolution. In addition to teaching about evolution through exhibits and programming (like in many of our exhibits), many museums participate in research to explore a visitor’s understanding in an effort to communicate more effectively. See the special issue of Museum and Social Issues on evolution in museums as an example. My own "Understanding the Tree of Life" project explored how people interpret ‘tree of life’ diagrams in an effort to help design more effective graphics to support visitor understanding.

Would I love to see more and better evolution education in schools? Absolutely! Most museums offer field trip experiences for school groups, and many are involved in providing professional development opportunities about evolution for educators. I take pride in the efforts of museums, science centers, zoos & aquaria, nature centers and others in providing and an opportunity for students and teachers to explore evolutionary ideas through museum visits.  And as this study suggests, such experiences are more important than ever.