Wednesday, March 15, 2017

Snakes from the KU Herpetology collection

Every March 17, lovers of Irish culture around the world commemorate the life and legend of a fifth-century missionary best known for spreading Christianity in Ireland, but also for driving all of the island’s snakes into the sea.

But could the tale of St. Patrick conceivably explain Ireland’s lack of snakes? Is it even possible to herd snakes? Could these long-banished serpents someday make their way back to Ireland?

Between lashings of green beer and plates heaped with corned beef and cabbage, such questions gnaw at every Hibernophile.

The University of Kansas’ Biodiversity Institute has one of the world’s foremost assemblage of herpetologists — and that's not blarney. These researchers, like St. Patrick himself, show a legendary penchant for chasing snakes. In honor of St. Patrick’s Day, a group of scientists in the Division of Herpetology flashed their gift for the gab in pondering both the science and myth behind the Patron Saint of Ireland.

Q: Legend holds that St. Patrick drove all the snakes from Ireland in the fifth century. Would it be possible for one man to drive snakes from an entire island nation? How might one man go about it?

Rich Glor, curator of herpetology: I’m not going to fact-check the legend — after all, the guy was a saint, and who am I to question his accomplishments? Normal humans have had a very difficult time eliminating some island snake populations. The brown tree snake, for example, was accidentally introduced to the island of Guam, which previously had no snakes. Guam’s birds, some of which were found nowhere else in the world, were poorly prepared for this new predator, and many have been driven to extinction or near extinction as a result.

Concentrated efforts to exterminate the tree snakes have included electrified snake containment fences and teams of hunters using trained snake-sniffing dogs, but it seems like the snakes are there to stay. On the other hand, however, humans have done a very good job of driving snakes to the brink of extinction. In the United States, for example, humans have undertaken a more than century-long effort to exterminate rattlesnakes. This effort, which continues to this day in some parts of the country, has resulted in the extinction of rattlesnakes across much of their ancestral range and has led to the classification of many rattlesnake populations as endangered.

Historical records suggest that individual snake hunters were often responsible for wiping out entire populations by capturing and killing all of the individuals as they emerged from communal hibernation dens in the spring. St. Patrick’s task would certainly have been easier if Ireland’s legendary snakes used the same type of communal hibernation strategy as rattlesnakes. Other rattlesnake hunters use even more nefarious strategies: Snake hunters at rattlesnake roundups, for example, often spray gasoline into snake dens and catch the snakes as they exit the den attempting to flee the noxious fumes, but a man of the cloth seems very unlikely to have adopted such a grotesque approach. 

Luke Welton, the Herpetology Division’s collections manager: It’s quite interesting that no native snakes are currently known from Ireland, despite a number of species occurring in more southerly parts of the United Kingdom. One consideration is that the climate of Ireland would likely keep any potential populations of ectotherms fairly small, which would make them much more susceptible to extinction or eradication.

Q: Supposedly, St. Patrick drove the snakes into the sea. Can a person drive snakes in a given direction, and would they perish if you drove them into an ocean?

Jeff Weinell, graduate student: During fieldwork, herpetologists often use drift fences (sheet metal or mesh partially buried along one edge) to direct snakes and other small reptiles toward a particular direction (usually into a bucket). However, this method wouldn't work to direct most snakes into the ocean, and, therefore, St. Patrick probably didn't use drift fences. Some snakes do live in the ocean, but these species are only found in the Pacific and Indian oceans. If St. Patrick found a way to put all of the snakes of Ireland directly into the ocean, most probably would have perished. However, many snakes are good swimmers, and some of them may have been able to find their way back to shore. 

Glor: For anybody who’s not a saint, herding snakes might be even more difficult than herding cats. Herpetologists sometimes use low fences to corral snakes, but even this is only partly effective. Most snakes would perish if forced into the ocean. Ocean-dwelling snakes, which are not found anywhere near Ireland, have numerous specializations that permit them to live in the ocean that other snakes lack. For example, ocean snakes have special physiological mechanisms to cope with saltwater. They also have flattened oar-like tails and specialized scales that allow them to swim in ocean waters.

Q: If it wasn't St. Patrick’s doing, what are the scientific reasons for the lack of snakes in Ireland? Are there other places without snakes? Why?

Katie Allen, graduate student: The scientific reason there are no snakes in Ireland is actually a result of the last Ice Age. As recently as about 19,000 years ago Ireland was buried in 3,000 meters (9,800 feet) of ice and was essentially an arctic wasteland. After the glaciers melted, the Irish Sea formed and created a 50-mile-wide barrier between the island and the mainland. During the Ice Age, snakes were not able to survive in Ireland, and afterward they were not able to cross the large, cold sea to reach it. There are several other islands that naturally do not have any snakes, including Greenland, Iceland, New Zealand and Hawaii. These islands are snake-free for similar reasons; either climate or distance from the mainland prevents colonization. Iceland, New Zealand and Hawaii have also banned pet snakes in order to keep their islands free of scaly invaders.

Q: Are there any reptiles in Ireland?

Glor: Yes, Ireland has one lizard species, which is called the "common lizard" but is actually unusual among lizards because it gives birth to live young rather than laying eggs.

Allen: Only one species of lizard is native to Ireland, the viviparous lizard (Zootoca vivipara). This species is widely distributed across Europe and Asia and is able to live farther north than any other terrestrial reptile. One of its adaptations to this cold lifestyle is to give birth to live young instead of laying eggs. Aside from this lizard, there are several species of sea turtles that inhabit the coastal areas of Ireland.

Q: What would be the most effective way to drive snakes from your yard, garden or house?

Glor: Why would you want to drive snakes from your yard, garden or house?

Brown: That’s the last thing I would do. The real question is, “How can we attract more snakes to our yards, gardens, and yes, even basements of our houses?” If we had more snakes around, we wouldn’t have to buy traps and poisons to handle household pests like rats and mice.

Q: What are the benefit of snakes to an ecosystem like the one in Ireland? Are snakes a benefit to humans in ways that are underappreciated? What are the drawbacks of snakes?

Glor: Nobody knows what effect snakes could have on an ecosystem like Ireland’s. In some ecosystems, snakes are major predators of small animals like mice. I don’t think snakes are a benefit to humans in ways that are underappreciated. Most snakes have no drawbacks outside of causing irrational fear in some humans. Some snakes are venomous and can be dangerous to humans.

Brown: In all seriousness, and particularly with regard to human health issues, snakes are highly beneficial. For example, scientists have documented that the primary reservoir for the explosive spread of Lyme disease in this part of the country are ticks, which are transported by mammals like deer and rodents. Additionally, most people contract Lyme disease doing regular household things like gardening or raking leaves in their own yard because they come in contact with ticks carried by rodents.  I would much rather have a healthy population of harmless black rat snakes in my yard than an infestation of filthy, debilitating disease-carrying rodents. But, you know, that’s just me.

Welton: Snakes are quite beneficial ecologically. They are the controllers of rodent and pest populations and are exactly the kinds of predators that keep vectors of some human diseases at bay. No snakes would likely mean an increase in diseases like hantavirus and plague, which are carried by rodents. Besides just the disease aspect, would you rather have one snake in your garage or basement, or several hundred mice or rats?

Q: Why do people dislike snakes? Why does our culture associate snakes with evil?

Glor: Many people have done research on this topic without firm answers. Some people believe a fear of snakes is hardwired due to our ancestors’ interactions with deadly venomous snakes. One need look no further than the first chapter of the Good Book to get a sense for why our western culture associates snakes with evil; after the snake deceives Eve in the Garden of Eden, God curses snakes over all other animals and tells the snake “on your belly you will go, and dust you will eat all the days of your life” (which makes one wonder how snakes were getting around prior to the curse).

Brown: Sometimes I think people don’t like snakes because of the way they move. People just get creeped out by “slithering” snakes and almost instinctively recoil when they first see a snake. Unfortunately, humans also react violently when they see a snake move — by what scientists term “lateral undulation” (slithering). However, scientists infer from the existence of many well-preserved transitional fossils of intermediate forms that snakes evolved from ancestors that possessed limbs. Not only does the fossil record tell how the ancestors of today’s snakes lost limbs and evolved elongated body plans over evolutionary timescales, but in today’s “primitive” living snakes, the vestiges of those limbs can be seen — in pythons, for example, that still have tiny claws at the base of their tails. So we can actually view snakes as just one group of very specialized, highly successful lizards. Strangely, in this instance, the biblical account and evolutionary biology’s explanation are curiously aligned. And yet no one ever tries to exterminate lizards on their property or dig up lizard dens with the goal of mass-murdering all inhabitants.

Welton: In my opinion, society is largely the reason most people fear snakes. I don't know that there is a single group of animals that has had so much misinformation disseminated about it. One could argue that this fear stems from the Garden of Eden story and that all snakes are inherently bad. While I believe that definitely plays a part, I think the fear is a symptom of a larger problem associated with a lack of education. Too often, completely harmless (nonvenomous) snakes meet their end because of common defensive strategies (striking with mouth agape, rattling their rattle-less tails in debris or leaf-litter) that are intended to fool a would-be predator. This needless slaughter could almost always be prevented if one cared enough to become educated about the wildlife in their own backyard.

Q: Might snakes return to Ireland, due to changing climate or pet snakes being released into the wild? What would be the most likely species to thrive in Ireland?

Glor: Yes, this is definitely a possibility. Snakes found in nearby England are the most likely colonists.

Q: What are the main threats to snake biodiversity today globally?

Glor: Habitat loss is the greatest threat to biodiversity. In cases, specific populations are overexploited by pet trade.

Brown: And overall persecution by humans. Globally, when snake populations come in contact with human populations, the outcome usually is unfortunate and does not bode well for the long-term viability of the snake population. I agree with Luke, though — education is the key ensuring the conservation and long-term survival of the world’s 3,650 species of snakes.

-By Brendan Lynch

Photo: Snakes from the KU Biodiversity Institute herpetology collections

Herpetology
Wednesday, March 15, 2017

Snakes from the KU Herpetology collection

Every March 17, lovers of Irish culture around the world commemorate the life and legend of a fifth-century missionary best known for spreading Christianity in Ireland, but also for driving all of the island’s snakes into the sea.

But could the tale of St. Patrick conceivably explain Ireland’s lack of snakes? Is it even possible to herd snakes? Could these long-banished serpents someday make their way back to Ireland?

Between lashings of green beer and plates heaped with corned beef and cabbage, such questions gnaw at every Hibernophile.

The University of Kansas’ Biodiversity Institute has one of the world’s foremost assemblage of herpetologists — and that's not blarney. These researchers, like St. Patrick himself, show a legendary penchant for chasing snakes. In honor of St. Patrick’s Day, a group of scientists in the Division of Herpetology flashed their gift for the gab in pondering both the science and myth behind the Patron Saint of Ireland.

Q: Legend holds that St. Patrick drove all the snakes from Ireland in the fifth century. Would it be possible for one man to drive snakes from an entire island nation? How might one man go about it?

Rich Glor, curator of herpetology: I’m not going to fact-check the legend — after all, the guy was a saint, and who am I to question his accomplishments? Normal humans have had a very difficult time eliminating some island snake populations. The brown tree snake, for example, was accidentally introduced to the island of Guam, which previously had no snakes. Guam’s birds, some of which were found nowhere else in the world, were poorly prepared for this new predator, and many have been driven to extinction or near extinction as a result.

Concentrated efforts to exterminate the tree snakes have included electrified snake containment fences and teams of hunters using trained snake-sniffing dogs, but it seems like the snakes are there to stay. On the other hand, however, humans have done a very good job of driving snakes to the brink of extinction. In the United States, for example, humans have undertaken a more than century-long effort to exterminate rattlesnakes. This effort, which continues to this day in some parts of the country, has resulted in the extinction of rattlesnakes across much of their ancestral range and has led to the classification of many rattlesnake populations as endangered.

Historical records suggest that individual snake hunters were often responsible for wiping out entire populations by capturing and killing all of the individuals as they emerged from communal hibernation dens in the spring. St. Patrick’s task would certainly have been easier if Ireland’s legendary snakes used the same type of communal hibernation strategy as rattlesnakes. Other rattlesnake hunters use even more nefarious strategies: Snake hunters at rattlesnake roundups, for example, often spray gasoline into snake dens and catch the snakes as they exit the den attempting to flee the noxious fumes, but a man of the cloth seems very unlikely to have adopted such a grotesque approach. 

Luke Welton, the Herpetology Division’s collections manager: It’s quite interesting that no native snakes are currently known from Ireland, despite a number of species occurring in more southerly parts of the United Kingdom. One consideration is that the climate of Ireland would likely keep any potential populations of ectotherms fairly small, which would make them much more susceptible to extinction or eradication.

Q: Supposedly, St. Patrick drove the snakes into the sea. Can a person drive snakes in a given direction, and would they perish if you drove them into an ocean?

Jeff Weinell, graduate student: During fieldwork, herpetologists often use drift fences (sheet metal or mesh partially buried along one edge) to direct snakes and other small reptiles toward a particular direction (usually into a bucket). However, this method wouldn't work to direct most snakes into the ocean, and, therefore, St. Patrick probably didn't use drift fences. Some snakes do live in the ocean, but these species are only found in the Pacific and Indian oceans. If St. Patrick found a way to put all of the snakes of Ireland directly into the ocean, most probably would have perished. However, many snakes are good swimmers, and some of them may have been able to find their way back to shore. 

Glor: For anybody who’s not a saint, herding snakes might be even more difficult than herding cats. Herpetologists sometimes use low fences to corral snakes, but even this is only partly effective. Most snakes would perish if forced into the ocean. Ocean-dwelling snakes, which are not found anywhere near Ireland, have numerous specializations that permit them to live in the ocean that other snakes lack. For example, ocean snakes have special physiological mechanisms to cope with saltwater. They also have flattened oar-like tails and specialized scales that allow them to swim in ocean waters.

Q: If it wasn't St. Patrick’s doing, what are the scientific reasons for the lack of snakes in Ireland? Are there other places without snakes? Why?

Katie Allen, graduate student: The scientific reason there are no snakes in Ireland is actually a result of the last Ice Age. As recently as about 19,000 years ago Ireland was buried in 3,000 meters (9,800 feet) of ice and was essentially an arctic wasteland. After the glaciers melted, the Irish Sea formed and created a 50-mile-wide barrier between the island and the mainland. During the Ice Age, snakes were not able to survive in Ireland, and afterward they were not able to cross the large, cold sea to reach it. There are several other islands that naturally do not have any snakes, including Greenland, Iceland, New Zealand and Hawaii. These islands are snake-free for similar reasons; either climate or distance from the mainland prevents colonization. Iceland, New Zealand and Hawaii have also banned pet snakes in order to keep their islands free of scaly invaders.

Q: Are there any reptiles in Ireland?

Glor: Yes, Ireland has one lizard species, which is called the "common lizard" but is actually unusual among lizards because it gives birth to live young rather than laying eggs.

Allen: Only one species of lizard is native to Ireland, the viviparous lizard (Zootoca vivipara). This species is widely distributed across Europe and Asia and is able to live farther north than any other terrestrial reptile. One of its adaptations to this cold lifestyle is to give birth to live young instead of laying eggs. Aside from this lizard, there are several species of sea turtles that inhabit the coastal areas of Ireland.

Q: What would be the most effective way to drive snakes from your yard, garden or house?

Glor: Why would you want to drive snakes from your yard, garden or house?

Brown: That’s the last thing I would do. The real question is, “How can we attract more snakes to our yards, gardens, and yes, even basements of our houses?” If we had more snakes around, we wouldn’t have to buy traps and poisons to handle household pests like rats and mice.

Q: What are the benefit of snakes to an ecosystem like the one in Ireland? Are snakes a benefit to humans in ways that are underappreciated? What are the drawbacks of snakes?

Glor: Nobody knows what effect snakes could have on an ecosystem like Ireland’s. In some ecosystems, snakes are major predators of small animals like mice. I don’t think snakes are a benefit to humans in ways that are underappreciated. Most snakes have no drawbacks outside of causing irrational fear in some humans. Some snakes are venomous and can be dangerous to humans.

Brown: In all seriousness, and particularly with regard to human health issues, snakes are highly beneficial. For example, scientists have documented that the primary reservoir for the explosive spread of Lyme disease in this part of the country are ticks, which are transported by mammals like deer and rodents. Additionally, most people contract Lyme disease doing regular household things like gardening or raking leaves in their own yard because they come in contact with ticks carried by rodents.  I would much rather have a healthy population of harmless black rat snakes in my yard than an infestation of filthy, debilitating disease-carrying rodents. But, you know, that’s just me.

Welton: Snakes are quite beneficial ecologically. They are the controllers of rodent and pest populations and are exactly the kinds of predators that keep vectors of some human diseases at bay. No snakes would likely mean an increase in diseases like hantavirus and plague, which are carried by rodents. Besides just the disease aspect, would you rather have one snake in your garage or basement, or several hundred mice or rats?

Q: Why do people dislike snakes? Why does our culture associate snakes with evil?

Glor: Many people have done research on this topic without firm answers. Some people believe a fear of snakes is hardwired due to our ancestors’ interactions with deadly venomous snakes. One need look no further than the first chapter of the Good Book to get a sense for why our western culture associates snakes with evil; after the snake deceives Eve in the Garden of Eden, God curses snakes over all other animals and tells the snake “on your belly you will go, and dust you will eat all the days of your life” (which makes one wonder how snakes were getting around prior to the curse).

Brown: Sometimes I think people don’t like snakes because of the way they move. People just get creeped out by “slithering” snakes and almost instinctively recoil when they first see a snake. Unfortunately, humans also react violently when they see a snake move — by what scientists term “lateral undulation” (slithering). However, scientists infer from the existence of many well-preserved transitional fossils of intermediate forms that snakes evolved from ancestors that possessed limbs. Not only does the fossil record tell how the ancestors of today’s snakes lost limbs and evolved elongated body plans over evolutionary timescales, but in today’s “primitive” living snakes, the vestiges of those limbs can be seen — in pythons, for example, that still have tiny claws at the base of their tails. So we can actually view snakes as just one group of very specialized, highly successful lizards. Strangely, in this instance, the biblical account and evolutionary biology’s explanation are curiously aligned. And yet no one ever tries to exterminate lizards on their property or dig up lizard dens with the goal of mass-murdering all inhabitants.

Welton: In my opinion, society is largely the reason most people fear snakes. I don't know that there is a single group of animals that has had so much misinformation disseminated about it. One could argue that this fear stems from the Garden of Eden story and that all snakes are inherently bad. While I believe that definitely plays a part, I think the fear is a symptom of a larger problem associated with a lack of education. Too often, completely harmless (nonvenomous) snakes meet their end because of common defensive strategies (striking with mouth agape, rattling their rattle-less tails in debris or leaf-litter) that are intended to fool a would-be predator. This needless slaughter could almost always be prevented if one cared enough to become educated about the wildlife in their own backyard.

Q: Might snakes return to Ireland, due to changing climate or pet snakes being released into the wild? What would be the most likely species to thrive in Ireland?

Glor: Yes, this is definitely a possibility. Snakes found in nearby England are the most likely colonists.

Q: What are the main threats to snake biodiversity today globally?

Glor: Habitat loss is the greatest threat to biodiversity. In cases, specific populations are overexploited by pet trade.

Brown: And overall persecution by humans. Globally, when snake populations come in contact with human populations, the outcome usually is unfortunate and does not bode well for the long-term viability of the snake population. I agree with Luke, though — education is the key ensuring the conservation and long-term survival of the world’s 3,650 species of snakes.

-By Brendan Lynch

Photo: Snakes from the KU Biodiversity Institute herpetology collections

Herpetology
Wednesday, March 15, 2017

Snakes from the KU Herpetology collection

Every March 17, lovers of Irish culture around the world commemorate the life and legend of a fifth-century missionary best known for spreading Christianity in Ireland, but also for driving all of the island’s snakes into the sea.

But could the tale of St. Patrick conceivably explain Ireland’s lack of snakes? Is it even possible to herd snakes? Could these long-banished serpents someday make their way back to Ireland?

Between lashings of green beer and plates heaped with corned beef and cabbage, such questions gnaw at every Hibernophile.

The University of Kansas’ Biodiversity Institute has one of the world’s foremost assemblage of herpetologists — and that's not blarney. These researchers, like St. Patrick himself, show a legendary penchant for chasing snakes. In honor of St. Patrick’s Day, a group of scientists in the Division of Herpetology flashed their gift for the gab in pondering both the science and myth behind the Patron Saint of Ireland.

Q: Legend holds that St. Patrick drove all the snakes from Ireland in the fifth century. Would it be possible for one man to drive snakes from an entire island nation? How might one man go about it?

Rich Glor, curator of herpetology: I’m not going to fact-check the legend — after all, the guy was a saint, and who am I to question his accomplishments? Normal humans have had a very difficult time eliminating some island snake populations. The brown tree snake, for example, was accidentally introduced to the island of Guam, which previously had no snakes. Guam’s birds, some of which were found nowhere else in the world, were poorly prepared for this new predator, and many have been driven to extinction or near extinction as a result.

Concentrated efforts to exterminate the tree snakes have included electrified snake containment fences and teams of hunters using trained snake-sniffing dogs, but it seems like the snakes are there to stay. On the other hand, however, humans have done a very good job of driving snakes to the brink of extinction. In the United States, for example, humans have undertaken a more than century-long effort to exterminate rattlesnakes. This effort, which continues to this day in some parts of the country, has resulted in the extinction of rattlesnakes across much of their ancestral range and has led to the classification of many rattlesnake populations as endangered.

Historical records suggest that individual snake hunters were often responsible for wiping out entire populations by capturing and killing all of the individuals as they emerged from communal hibernation dens in the spring. St. Patrick’s task would certainly have been easier if Ireland’s legendary snakes used the same type of communal hibernation strategy as rattlesnakes. Other rattlesnake hunters use even more nefarious strategies: Snake hunters at rattlesnake roundups, for example, often spray gasoline into snake dens and catch the snakes as they exit the den attempting to flee the noxious fumes, but a man of the cloth seems very unlikely to have adopted such a grotesque approach. 

Luke Welton, the Herpetology Division’s collections manager: It’s quite interesting that no native snakes are currently known from Ireland, despite a number of species occurring in more southerly parts of the United Kingdom. One consideration is that the climate of Ireland would likely keep any potential populations of ectotherms fairly small, which would make them much more susceptible to extinction or eradication.

Q: Supposedly, St. Patrick drove the snakes into the sea. Can a person drive snakes in a given direction, and would they perish if you drove them into an ocean?

Jeff Weinell, graduate student: During fieldwork, herpetologists often use drift fences (sheet metal or mesh partially buried along one edge) to direct snakes and other small reptiles toward a particular direction (usually into a bucket). However, this method wouldn't work to direct most snakes into the ocean, and, therefore, St. Patrick probably didn't use drift fences. Some snakes do live in the ocean, but these species are only found in the Pacific and Indian oceans. If St. Patrick found a way to put all of the snakes of Ireland directly into the ocean, most probably would have perished. However, many snakes are good swimmers, and some of them may have been able to find their way back to shore. 

Glor: For anybody who’s not a saint, herding snakes might be even more difficult than herding cats. Herpetologists sometimes use low fences to corral snakes, but even this is only partly effective. Most snakes would perish if forced into the ocean. Ocean-dwelling snakes, which are not found anywhere near Ireland, have numerous specializations that permit them to live in the ocean that other snakes lack. For example, ocean snakes have special physiological mechanisms to cope with saltwater. They also have flattened oar-like tails and specialized scales that allow them to swim in ocean waters.

Q: If it wasn't St. Patrick’s doing, what are the scientific reasons for the lack of snakes in Ireland? Are there other places without snakes? Why?

Katie Allen, graduate student: The scientific reason there are no snakes in Ireland is actually a result of the last Ice Age. As recently as about 19,000 years ago Ireland was buried in 3,000 meters (9,800 feet) of ice and was essentially an arctic wasteland. After the glaciers melted, the Irish Sea formed and created a 50-mile-wide barrier between the island and the mainland. During the Ice Age, snakes were not able to survive in Ireland, and afterward they were not able to cross the large, cold sea to reach it. There are several other islands that naturally do not have any snakes, including Greenland, Iceland, New Zealand and Hawaii. These islands are snake-free for similar reasons; either climate or distance from the mainland prevents colonization. Iceland, New Zealand and Hawaii have also banned pet snakes in order to keep their islands free of scaly invaders.

Q: Are there any reptiles in Ireland?

Glor: Yes, Ireland has one lizard species, which is called the "common lizard" but is actually unusual among lizards because it gives birth to live young rather than laying eggs.

Allen: Only one species of lizard is native to Ireland, the viviparous lizard (Zootoca vivipara). This species is widely distributed across Europe and Asia and is able to live farther north than any other terrestrial reptile. One of its adaptations to this cold lifestyle is to give birth to live young instead of laying eggs. Aside from this lizard, there are several species of sea turtles that inhabit the coastal areas of Ireland.

Q: What would be the most effective way to drive snakes from your yard, garden or house?

Glor: Why would you want to drive snakes from your yard, garden or house?

Brown: That’s the last thing I would do. The real question is, “How can we attract more snakes to our yards, gardens, and yes, even basements of our houses?” If we had more snakes around, we wouldn’t have to buy traps and poisons to handle household pests like rats and mice.

Q: What are the benefit of snakes to an ecosystem like the one in Ireland? Are snakes a benefit to humans in ways that are underappreciated? What are the drawbacks of snakes?

Glor: Nobody knows what effect snakes could have on an ecosystem like Ireland’s. In some ecosystems, snakes are major predators of small animals like mice. I don’t think snakes are a benefit to humans in ways that are underappreciated. Most snakes have no drawbacks outside of causing irrational fear in some humans. Some snakes are venomous and can be dangerous to humans.

Brown: In all seriousness, and particularly with regard to human health issues, snakes are highly beneficial. For example, scientists have documented that the primary reservoir for the explosive spread of Lyme disease in this part of the country are ticks, which are transported by mammals like deer and rodents. Additionally, most people contract Lyme disease doing regular household things like gardening or raking leaves in their own yard because they come in contact with ticks carried by rodents.  I would much rather have a healthy population of harmless black rat snakes in my yard than an infestation of filthy, debilitating disease-carrying rodents. But, you know, that’s just me.

Welton: Snakes are quite beneficial ecologically. They are the controllers of rodent and pest populations and are exactly the kinds of predators that keep vectors of some human diseases at bay. No snakes would likely mean an increase in diseases like hantavirus and plague, which are carried by rodents. Besides just the disease aspect, would you rather have one snake in your garage or basement, or several hundred mice or rats?

Q: Why do people dislike snakes? Why does our culture associate snakes with evil?

Glor: Many people have done research on this topic without firm answers. Some people believe a fear of snakes is hardwired due to our ancestors’ interactions with deadly venomous snakes. One need look no further than the first chapter of the Good Book to get a sense for why our western culture associates snakes with evil; after the snake deceives Eve in the Garden of Eden, God curses snakes over all other animals and tells the snake “on your belly you will go, and dust you will eat all the days of your life” (which makes one wonder how snakes were getting around prior to the curse).

Brown: Sometimes I think people don’t like snakes because of the way they move. People just get creeped out by “slithering” snakes and almost instinctively recoil when they first see a snake. Unfortunately, humans also react violently when they see a snake move — by what scientists term “lateral undulation” (slithering). However, scientists infer from the existence of many well-preserved transitional fossils of intermediate forms that snakes evolved from ancestors that possessed limbs. Not only does the fossil record tell how the ancestors of today’s snakes lost limbs and evolved elongated body plans over evolutionary timescales, but in today’s “primitive” living snakes, the vestiges of those limbs can be seen — in pythons, for example, that still have tiny claws at the base of their tails. So we can actually view snakes as just one group of very specialized, highly successful lizards. Strangely, in this instance, the biblical account and evolutionary biology’s explanation are curiously aligned. And yet no one ever tries to exterminate lizards on their property or dig up lizard dens with the goal of mass-murdering all inhabitants.

Welton: In my opinion, society is largely the reason most people fear snakes. I don't know that there is a single group of animals that has had so much misinformation disseminated about it. One could argue that this fear stems from the Garden of Eden story and that all snakes are inherently bad. While I believe that definitely plays a part, I think the fear is a symptom of a larger problem associated with a lack of education. Too often, completely harmless (nonvenomous) snakes meet their end because of common defensive strategies (striking with mouth agape, rattling their rattle-less tails in debris or leaf-litter) that are intended to fool a would-be predator. This needless slaughter could almost always be prevented if one cared enough to become educated about the wildlife in their own backyard.

Q: Might snakes return to Ireland, due to changing climate or pet snakes being released into the wild? What would be the most likely species to thrive in Ireland?

Glor: Yes, this is definitely a possibility. Snakes found in nearby England are the most likely colonists.

Q: What are the main threats to snake biodiversity today globally?

Glor: Habitat loss is the greatest threat to biodiversity. In cases, specific populations are overexploited by pet trade.

Brown: And overall persecution by humans. Globally, when snake populations come in contact with human populations, the outcome usually is unfortunate and does not bode well for the long-term viability of the snake population. I agree with Luke, though — education is the key ensuring the conservation and long-term survival of the world’s 3,650 species of snakes.

-By Brendan Lynch

Photo: Snakes from the KU Biodiversity Institute herpetology collections

Herpetology
Friday, March 3, 2017

Suriname river

This year for spring break, students in Andrew Short’s KU entomology course won’t be headed to the beaches of Cancun or South Padre Island. Instead, they’ll head to the jungles of Suriname, a country many people would struggle to find on a map.

Located on the northeastern coast of South America, Suriname is home to dense tropical forests. It is crisscrossed by rocky rivers, roads that grow narrow until they dead-end, gold mining, and animal and plant species that are still new to science. 

Research expeditions to document species of insects, birds, reptiles, fish and mammals in Suriname have caught the interest of writers such as Richard Conniff, who recently joined Short and a full team of scientists in Suriname for an article published this month in Smithsonian magazine.

For several years, KU students have been participating in Suriname entomology field expeditions with Short, who is curator of entomology at the KU Biodiversity Institute and associate professor of ecology and evolutionary biology. In 2015, Short received a $700,000 grant from the National Science Foundation to fund the research into understanding more about the evolution, distribution and habitats of aquatic insects, and to bring undergraduate and graduate students into the program. 

Students participating in the course and expeditions learn various methods of trapping and collecting insects, whether they are in aquatic habitats, terrestrial, flying through the air, or even inhabiting the pools of water trapped by plants at the base of their leaves. 

Not all students who go on Biodiversity Institute expeditions are studying biology. Alumni Tom and Jann Rudkin of Los Gatos, CA, have provided funds for students pursing degrees such as journalism, illustration, photography and textile arts to experience research expeditions alongside scientific staff and students who are pursing degrees in biology. 

In 2016, Gabriel O’Connor, a KU junior majoring in film studies, went on the Biodiversity Institute expedition to Suriname. He created two film projects from the experience: one focuses on the research conducted by Andrew Short and the team of students in Suriname. The other, a longer film, distilled Gabriel’s personal experience with the Suriname trip. 

This year, as Andrew prepares to head back to Suriname, he is hoping to track down a few species that are known, but little has been studied about the habitats they occupy.  

“The surrounding region of this year’s field site has been impacted by gold mining, so I’m also interested to see how that has affected the local fauna,” Short said. 

Suriname isn’t the only country on Short’s research list. He was recently selected as a 2017-2018 Fulbright Scholar to Brazil, where he will work extensively with colleagues at the National Institute of Amazonian Research (INPA) in Manaus to expand the geographic scope of his research over the next two years.

Five undergraduate entomology students will go on the expedition to Suriname: Miranda Blanchard of Lawrence; Ben Johnson of Wichita, KS; Shannon Pelkey of De Soto, KS; and Alex Kohlenberg and Tanner Myers, both of Louisburg, KS.  They will be joined by Stephen Baca, a KU graduate student studying entomology, as well as several students and faculty from the National University of Suriname.

The group departs for Paramaribo on March 15.

Top photo: collecting insects in Suriname aquatic environments.
Bottom photo: The 2016 team of KU and Suriname students. 

Entomology
Thursday, January 19, 2017

Monument Rocks

If you stroll the halls of a natural history museum anywhere in the world and come face-to-face with the prehistoric fossil of a pterodactyl or mosasaur, the odds are good it was unearthed in Kansas.

Indeed, American paleontology came of age in the 19th century largely thanks to Kansas’ chalky earth — made famous by the University of Kansas’ “Rock Chalk Chant.” The fine-grained chalk, especially good at preserving fossils, was ocean floor during the Late Cretaceous, from 65 to 100 million years ago, when much of Kansas was beneath the Western Interior Seaway.

“That ocean ran all the way from present-day Gulf of Mexico to northern Canada, through the middle part of this country,” said Bruce Lieberman, senior curator at the KU Natural History Museum, which houses one of the world’s foremost collections of Late Cretaceous fossils. “The water would have been warm and tropical, no deeper than 200 meters at its deepest point.”

The KU researcher said the seaway and its shoreline abounded with ancient marine life such as diving birds, winged and swimming reptiles, fish, clams, and ancient squid relatives called ammonites.

“It’d have been a great place to swim, except there were giant mosasaurs and sharks that would have loved to eat a human,” Lieberman said.

While many fossil treasures from the Western Interior Seaway adorn museums, today many thousands more are stored in the back rooms of various research institutions, inaccessible to most people.

So Lieberman is heading up a project to change that. He’s the primary investigator on a new $2.1 million National Science Foundation grant to digitize Western Interior Seaway collections from eight leading institutions — KU’s Biodiversity Institute, the American Museum of Natural History, the Sternberg Museum of Natural History at Fort Hays State University, the South Dakota School of Mines and Technology, the University of Colorado Museum of Natural History, the University of New Mexico, the Jackson School Museum of Earth History at the University of Texas and the Yale University Peabody Museum of Natural History.  Scientists from the Paleontological Research Institution in Ithaca, New York will also be involved.

“We have all kinds of fossils in these museums, but too many are buried away in drawers and cabinets that make them inaccessible to scientists and the public,” said Lieberman. “We think digitization of these fossils has value for answering scientific questions.”

For instance, a warming climate during the Late Cretaceous is similar to conditions climate scientists expected Earth to undergo in coming centuries. So the comprehensive view offered by digitizing Late Cretaceous fossils could forecast how species may react to altered habitats.  

“We’re going to use computer mapping called ‘ecological niche modeling’ to look at how species were competing with one another — when you pack more species in more tightly, theoretically they’re going to be competing more with each other, which could drive more extinctions,” said Lieberman. “We’d like to see how species adjust their range. Do they partition their range to avoid overlapping as much as possible? This has practical applications because people get food from oceans. We’re predicting as climate gets warmer it’ll cause lots of extinctions. But we’re wondering if we should expect increased competition as well.”

Not only will the digitization work make the Western Interior Seaway fossils more useful to scientists, but the grant will open up access to the fossil treasures for the public at large.

“We’re going to be creating images and providing information about where fossils come from,” Lieberman said. “The public can look at the same resources as a museum researcher, to expand science out to the public more.”

The public outreach will center on a new “Digital Encyclopedia of Ancient Life” intended as an open-access textbook of paleontology. The atlas will feature an online Cretaceous Atlas with at least 800 species from the Western Interior Seaway to be added to the existing Digital Atlas of Ancient Life for the web and an iPhone app.

In addition to open-access resources, the researchers will develop K-12 curricular materials from the digitization project as well as providing 3-D scans of the fossils and 3-D models for some classrooms. Additionally, exhibitions based on the grant work are planned at the associated institutions. 

Lieberman said the work would involve at least 13 undergraduates and 4 graduate students with the intention of recruiting students from underrepresented groups.

Along with Lieberman, KU Biodiversity Institute faculty working on the grant include Chris Beard and Jim Beach.

Indeed, KU has been at the forefront of digitizing fossils in the 21st century — in the same way that Kansas, thanks to its chalk, was the hotbed of paleontological fieldwork in the 19th century.

“I’ve always thought it was cool that our KU ‘Rock Chalk Chant’ ultimately goes back to rocks in Kansas where some of these awesome fossils were discovered,” said Lieberman. “When people today are chanting ‘Rock Chalk’ they’re probably not thinking of these fossils — but when I hear the chant, I think of fossils.”

--Brendan Lynch, KU News

Photo credit: Richard T. Bryant

Invertebrate Paleontology
Wednesday, November 2, 2016

Cornufer heffernani

The Solomon Islands in the Southwest Pacific are best known as a locale for some of the most intense fighting of the Second World War, including the bloody Battle of Guadalcanal. But for nearly a century, the rich biodiversity of the islands has been instrumental to the study of evolution, including research by noted scientists Ernst Mayr and Jared Diamond.

“Leading ideas of how speciation happens and evolution occurs were formed based on birds and frogs in this region,” said Rob Moyle, associate curator at the University of Kansas’ Biodiversity Institute, who specializes in the evolution of birds. “The islands are incredibly beautiful places but also at times incredibly inhospitable, very hot with really rough terrain and torrential downpours.”

Today, Moyle is leading a major research effort in the region supported by $1.3 million from the National Science Foundation to conduct fieldwork, collect museum specimens, record bioacoustics and sequence DNA of birds, reptiles, amphibians and mammals.

“We want to go back to test hypotheses, fill in gaps in the data and revisit this with much more modern methods than they were using decades ago,” Moyle said. “Some of the problems doing this work today are permitting issues and national boundaries. In the past, researchers just went island to island and collected what they wanted. It’s difficult to do the same thing today, but that’s what we’re hoping to do.”

The grant includes fieldwork spread across three nations — the Solomon Islands, New Guinea and Vanuatu. Many islands in the region are remote and isolated, making travel difficult for the researchers hoping to follow up on work performed by earlier biologists.

“Getting there isn’t simple,” Moyle said. “From the U.S., you have to go through Australia and fly back several hours to get to the Solomons. Very few airlines go there, but the main islands have little airstrips you get to on a little Twin Otter prop plane. To get to most small islands, you take small outboard boats. That can be iffy, because you go across some pretty open ocean crossings. Then, sometimes we take a boat up the river — a year ago we took a helicopter to a site in Guadalcanal.”

Cornufer guentheriMoyle’s colleagues include KU’s Rafe Brown, who is in charge of amphibian and reptile work; Chris Filardi, senior scientist at Conservation International; Michael Andersen of the University of New Mexico; Tyrone Lavery of the University of Queensland, Australia; Jonathan Richmond of the U.S. Geological Survey; and many participants and collaborators in the Solomon Islands, including David Boseto, co-director of Ecological Solutions Solomon Islands, a group dedicated to environmental research and conservation.

In the field, biologists will camp in teams ranging from two to 20 people, performing their work in shifts that depend on the animals of interest.

“If you’re studying birds, you’re up early,” Moyle said. “Our day starts before dawn, getting up, getting ready, getting tape recorders ready for vocalizations, getting nets ready — that goes through mid-morning, then we have work back at camp to preserve and prepare specimens. If you study frogs, you go herping at night. Sometimes we overlap, the herpetologists get back late, and the bird people are getting up.”

The teams will include many graduate and undergraduate students from KU and partner institutions.

“Graduate students will be heavily involved in fieldwork, lab work and publishing papers,” Moyle said. “We’ll also bring undergrads from the U.S. over to the Solomon Islands. They’ll be paired with undergraduates from the Solomons to work on research projects — so there’s both an international cultural experience as well as a scientific project.”

Back at KU’s specialized labs, researchers will conduct genomic sequencing of samples from the field to establish relationships between species and determine when separate species may have branched off from each other.

“Traditionally, scientists would collect bird specimens and their insights into what went on in a region came from looking at plumage color, the size and shape of the animal, and looking at maps of where they occurred on islands, but physical appearance can be very misleading,” Moyle said. “Genomic sequencing opened up new realm of inquiry, not just for figuring out if specimens A and B are related, or if A is more closely related to C, but also figuring out how quickly they diversified or how long ago they arrived in the archipelago.”

Moyle and his colleagues will use a process called “high-throughput sequencing” to trace how gene flow occurs between populations separated on isolated islands.

“Sometimes, we see there are populations on different islands that look or sound very different, and, so far, we actually can’t tell them apart genetically,” Moyle said. “We know there are differences in there, but it shows how little change there has to be in the genome to get something that sounds and looks very different. With some of this work, we’re able to identify the specific genes for differences we’re seeing among the species.”

localMoreover, the scientists are likely to identify species that are unknown to science and describe them for the first time.  

In addition to the scientific value of the research, work performed under the grant will inform policymakers and conservationists looking to protect biodiversity in the region.

“These islands are under great threat from a variety of sources,” Moyle said. “The most prominent threat is logging, but there are also some very aggressive resource extractions like gold, nickel, and bauxite mines and oil drilling. Some of these islands aren’t that large, and there’s not much forest left, so figuring out where species are and what’s left of them can give conservationists and governments some data to work with to make informed decisions.”  - Brendan Lynch, KU News

Photos, from top: 

The Solomon Island Palm Frog (Cornufer heffernani) is uncommon and found only in pristine rainforest. Its chirping call is often heard after heavy rains. Credit: Scott Travers

Mark Robbins, collection manager of birds in the KU Biodiversity Institute, examines bird specimens during a 2014 expedition to Choiseul Island while local guides from the Lauru Land Tribal Community look on. Credit: Scott Travers

The Solomon Island Eyelash Frog (Cornufer guentheri) is widely distributed in the archipelago and is an example of direct development – they skip the tadpole phase and hatch from eggs as tiny but fully developed frogs. Credit: Scott Travers

The field team at Nunubala camp, West Kwaio Region of Malaita Island during a 2015 expedition, including KU graduate students, local guides and Solomon Islands researchers. Credit: Scott Travers

The Collared Kingfisher (Todiramphus chloris) is ubiquitous in the region. Like most Old World kingfishers, this species is not a fisher but instead inhabits forest and open country, feeding on insects and small vertebrates. Credit: Rob Moyle.

Herpetology
Wednesday, November 2, 2016

Cornufer heffernani

The Solomon Islands in the Southwest Pacific are best known as a locale for some of the most intense fighting of the Second World War, including the bloody Battle of Guadalcanal. But for nearly a century, the rich biodiversity of the islands has been instrumental to the study of evolution, including research by noted scientists Ernst Mayr and Jared Diamond.

“Leading ideas of how speciation happens and evolution occurs were formed based on birds and frogs in this region,” said Rob Moyle, associate curator at the University of Kansas’ Biodiversity Institute, who specializes in the evolution of birds. “The islands are incredibly beautiful places but also at times incredibly inhospitable, very hot with really rough terrain and torrential downpours.”

Today, Moyle is leading a major research effort in the region supported by $1.3 million from the National Science Foundation to conduct fieldwork, collect museum specimens, record bioacoustics and sequence DNA of birds, reptiles, amphibians and mammals.

“We want to go back to test hypotheses, fill in gaps in the data and revisit this with much more modern methods than they were using decades ago,” Moyle said. “Some of the problems doing this work today are permitting issues and national boundaries. In the past, researchers just went island to island and collected what they wanted. It’s difficult to do the same thing today, but that’s what we’re hoping to do.”

The grant includes fieldwork spread across three nations — the Solomon Islands, New Guinea and Vanuatu. Many islands in the region are remote and isolated, making travel difficult for the researchers hoping to follow up on work performed by earlier biologists.

“Getting there isn’t simple,” Moyle said. “From the U.S., you have to go through Australia and fly back several hours to get to the Solomons. Very few airlines go there, but the main islands have little airstrips you get to on a little Twin Otter prop plane. To get to most small islands, you take small outboard boats. That can be iffy, because you go across some pretty open ocean crossings. Then, sometimes we take a boat up the river — a year ago we took a helicopter to a site in Guadalcanal.”

Cornufer guentheriMoyle’s colleagues include KU’s Rafe Brown, who is in charge of amphibian and reptile work; Chris Filardi, senior scientist at Conservation International; Michael Andersen of the University of New Mexico; Tyrone Lavery of the University of Queensland, Australia; Jonathan Richmond of the U.S. Geological Survey; and many participants and collaborators in the Solomon Islands, including David Boseto, co-director of Ecological Solutions Solomon Islands, a group dedicated to environmental research and conservation.

In the field, biologists will camp in teams ranging from two to 20 people, performing their work in shifts that depend on the animals of interest.

“If you’re studying birds, you’re up early,” Moyle said. “Our day starts before dawn, getting up, getting ready, getting tape recorders ready for vocalizations, getting nets ready — that goes through mid-morning, then we have work back at camp to preserve and prepare specimens. If you study frogs, you go herping at night. Sometimes we overlap, the herpetologists get back late, and the bird people are getting up.”

The teams will include many graduate and undergraduate students from KU and partner institutions.

“Graduate students will be heavily involved in fieldwork, lab work and publishing papers,” Moyle said. “We’ll also bring undergrads from the U.S. over to the Solomon Islands. They’ll be paired with undergraduates from the Solomons to work on research projects — so there’s both an international cultural experience as well as a scientific project.”

Back at KU’s specialized labs, researchers will conduct genomic sequencing of samples from the field to establish relationships between species and determine when separate species may have branched off from each other.

“Traditionally, scientists would collect bird specimens and their insights into what went on in a region came from looking at plumage color, the size and shape of the animal, and looking at maps of where they occurred on islands, but physical appearance can be very misleading,” Moyle said. “Genomic sequencing opened up new realm of inquiry, not just for figuring out if specimens A and B are related, or if A is more closely related to C, but also figuring out how quickly they diversified or how long ago they arrived in the archipelago.”

Moyle and his colleagues will use a process called “high-throughput sequencing” to trace how gene flow occurs between populations separated on isolated islands.

“Sometimes, we see there are populations on different islands that look or sound very different, and, so far, we actually can’t tell them apart genetically,” Moyle said. “We know there are differences in there, but it shows how little change there has to be in the genome to get something that sounds and looks very different. With some of this work, we’re able to identify the specific genes for differences we’re seeing among the species.”

localMoreover, the scientists are likely to identify species that are unknown to science and describe them for the first time.  

In addition to the scientific value of the research, work performed under the grant will inform policymakers and conservationists looking to protect biodiversity in the region.

“These islands are under great threat from a variety of sources,” Moyle said. “The most prominent threat is logging, but there are also some very aggressive resource extractions like gold, nickel, and bauxite mines and oil drilling. Some of these islands aren’t that large, and there’s not much forest left, so figuring out where species are and what’s left of them can give conservationists and governments some data to work with to make informed decisions.”  - Brendan Lynch, KU News

Photos, from top: 

The Solomon Island Palm Frog (Cornufer heffernani) is uncommon and found only in pristine rainforest. Its chirping call is often heard after heavy rains. Credit: Scott Travers

Mark Robbins, collection manager of birds in the KU Biodiversity Institute, examines bird specimens during a 2014 expedition to Choiseul Island while local guides from the Lauru Land Tribal Community look on. Credit: Scott Travers

The Solomon Island Eyelash Frog (Cornufer guentheri) is widely distributed in the archipelago and is an example of direct development – they skip the tadpole phase and hatch from eggs as tiny but fully developed frogs. Credit: Scott Travers

The field team at Nunubala camp, West Kwaio Region of Malaita Island during a 2015 expedition, including KU graduate students, local guides and Solomon Islands researchers. Credit: Scott Travers

The Collared Kingfisher (Todiramphus chloris) is ubiquitous in the region. Like most Old World kingfishers, this species is not a fisher but instead inhabits forest and open country, feeding on insects and small vertebrates. Credit: Rob Moyle.

Ornithology
Wednesday, January 11, 2017

Eocene Turkey

A $100,000 grant from the David B. Jones Foundation will help to develop a new generation of paleontologists at the University of Kansas, enabling students to pursue fieldwork in locations such as Wyoming and Turkey aimed at solving some of evolution’s deepest mysteries.

“This money can be used flexibly and broadly to support research training and educational outreach relating mainly to graduate and some undergraduate students at KU in vertebrate paleontology,” said K. Christopher Beard, Distinguished Foundation Professor, Department of Ecology & Evolutionary Biology and senior curator at the KU Biodiversity Institute, who is heading up work under the new grant.

Beard’s research focuses on the early evolution of mammals, including primates. He said the first three David B. Jones Fellows in Vertebrate Paleontology — Matt Jones, Spencer Mattingly and Ryan Ridder — would begin training this spring.

“It’s often hard to get federal funding to support participation by graduate and undergraduate researchers, especially in my kind of research, which is field-based,” Beard said. “Costs can escalate, especially with international fieldwork, airfare and procurements beyond lodging and food — it really can skyrocket. But in paleontology, one of the most important components is to get students access to work in the field.”

The researcher said that student work and training would center on two locations: Wyoming and the nation of Turkey.

Eocene outcropsIn Turkey, Beard’s students will have the opportunity to piece together the ancient migration of mammals in the geographically unique Pontide region, which researchers believe 45 million years ago was an island treasure house of biodiversity, something like today’s Madagascar.

“We’re trying to determine if the Pontide terrain played a role in how animals were able to move back and forth between Asia and Africa, close to the appearance of anthropoid primates,” Beard said. “The more fossils we collected there, the weirder they got. This Pontide island had a unique fauna never found anywhere else but a couple of animals that clearly came from Africa. The most common mammals we’ve found there are primitive hoofed mammals, clearly related to animals common in western Europe, but millions of years earlier — and we’ve got a bat that seems related to Asia.”

In terms of migration of these animals, Beard sees the ancient Pontide region less as a stepping stone between Asia and Africa and more of a “cul-de-sac.”

“Animals were getting to the islands, but not leaving so much — they seemed to get stuck there,” he said.

Before undertaking fieldwork in Turkey, the David B. Jones Fellows will travel to Wyoming to conduct research to establish how mammals during the late Paleocene responded to a warming climate.  

“We’re using Wyoming fieldwork as a proving ground to give students experience in somewhat exotic but not crazy-exotic setting before we take them internationally,” Beard said. “In the southwestern part of the state, we’re establishing a record of how mammals evolved in response to climatic change in the Paleocene, right after the dinosaurs have died and mammals are beginning to evolve rapidly, and comparing that to other findings from the Bighorn Basin.”

Beard said his students would be surveying for fossils, excavating sites and screen-washing sediment for minuscule fossils, as well as partnering with geologists to learn to read the landscape.

“They’ll pick up how to interpret sedimentary rocks, to understand what the ancient environment would have been,” he said. “Are you looking at ancient marsh, lake, seashore or river floodplain? Those are basic skills associated with areas like sedimentology and stratigraphy.”

In addition to work in the field domestically and internationally, the David B. Jones Fellows studying with Beard will be trained in the full “assembly line” of paleontological research, including restoration of fossils, and learning how to mold and cast fossil specimens. The training will be carried out under guidance from David Burnham, preparator at KU’s Natural History Museum. Further, with KU’s Oscar Sanisidro, the fellows will learn techniques of scientific illustration.

A key goal of the grant is facilitation of student publishing of findings in peer-reviewed journals.

“We want to stimulate scholarly research on part of the graduate students,” Beard said. “KU paleontology already has a great reputation, but we want to push it to the top of the mountain nationally, and one way is to have graduate students publishing scholarly work and giving presentations at conferences. In this grant, there’s funding to support that as well.”

Additionally, the grant provides funds for KU paleontology students to receive training in pedagogy.

“It’s something I faced as a graduate student,” Beard said. “I wound up learning a lot about research, but nobody taught me anything about how to teach. Skills in basic pedagogy are too often lacking in an overall graduate curriculum.”

Finally, the students will develop and lead outreach programs and events at KU’s Natural History Museum to engage the public and young people. Public outreach is a key goal of the David B. Jones Foundation, with its mission to further “educational, research and charitable activities working in the science of paleontology who primarily promote those activities within the United States of America.”

“David B. Jones was an amateur paleontologist who was involved in using fossils to get kids interested in science in general,” Beard said. “For instance, he was active in the Boy Scouts. I think this lines up so well with the agenda of the foundation.” 

- Brendan Lynch, KU News

Photos: K. Christopher Beard, KU Foundation Distinguished Professor, and a student work at a field site in Turkey. Eocene rock outcrops yield fossils at these sites. Photos by Gregoire Metais.

Vertebrate Paleontology
Wednesday, October 19, 2016

Biodiversity case

The public is invited to pet a hissing cockroach, see how body fluids are illuminated by black light, put together a human skeleton, and see some spooky reptile specimens at the KU Natural History Museum’s Party in the Panorama, 7 pm Oct. 29.

The festival of food, drink, jazz, science games and activities – coming shortly before Halloween -- will raise support to help children's programs and to transform exhibits. The event includes Free State Brewing Company beer, wine from Stone Hill Winery, and fine hors d'oeuvres. Casual Dress; no costumes required. Tickets are $50 per individual or two for $85 and available online and at the museum.

What can guests expect? 
•    Zap jewelry to learn what it's made of using X-ray fluorescence
•    See live Madagascar tortoises, some so small they fit in your palm
•    Learn what a dinosaur dig is like with two students who went to the T. rex dig in Montana this summer, and see some of the fossils recently discovered.
•    Try putting together a human skeleton, bone by bone
•    Pet a hissing cockroach
•    Learn how body fluids at a crime scene look when exposed to black light
•    Take a party pic in the photo booth
•    Go on a behind-the-scenes tour to see the fish, reptiles and amphibians scientists study
•    Enjoy roasted vegetable escalivada, many kinds of amuse bouche, quiche, French macaroons, chocolate truffles -- and a taste of our own bee hive honey in a special blue cheese appetizer
•    Listen to live jazz by Floyd the Barber

But in addition, participants have an opportunity to "shop" for their favorite museum causes at the party, said Leonard Krishtalka, director of the KU Biodiversity Institute.

“Your passion might be caring for the museum bees or summer camp scholarships, or adding a fern to our new paleo garden exhibit, or bringing our mobile museum into reality,” Krishtalka said. “Even small gifts for something as simple as a can of paint can help us transform an exhibit to make the featured specimens stand out.”

Previous guests at Party in the Panorama funded exhibit changes throughout the third floor fossil galleries, modernizing many exhibits. They also provided support for busses to bring children to the museum and repairs to the museum’s iconic prairie dog so that it would again pop out of its burrow. 

Tickets are $50 per individual or two for $85 and available online and at the museum. To get the couples discount, use the code COUPLE2 at checkout. For a discount on four tickets, use FOURTX.

Photos: The new biodiversity exhibit on the sixth floor (top), Kaw River fossil exhibit (middle), and the turtle fossil exhibit (bottom) all were made possible in whole or in part by Party in the Panorama participants in 2013 and 2014. 

Wednesday, August 10, 2016

With Zika sparking anxiety at the Summer Olympic Games in Brazil, and now being transmitted in Florida through contact with mosquitoes, accurately mapping the distribution of the virus is increasingly urgent.

Accounting for a host of often-overlooked drivers of transmission, a team of University of Kansas researchers has mapped Zika risk around the world with unprecedented resolution while considering more factors than previous models.  

The mapping effort uses ecological niche modeling, a technique used to predict distributions of species, to show the virus’ powerful ability to spread in South and Central America.
This study is the first to evaluate the risk of Zika virus transmission in Europe, which appears relatively low.
Research suggests parts of the southern U.S., including parts of Florida, Texas and Louisiana, are vulnerable to transmission of the virus.
“It’s the first detailed map that weighs different drivers of transmission,” said Abdallah Samy, who headed the research at the KU Biodiversity Institute. “We assessed different combinations of variables to see what are the major drivers — such as climate, or socioeconomics or people’s ability to access certain areas — and in the final map we merge all the variables.”

The resulting map predicts the likelihood of Zika exposure in the coming years by segmenting Earth’s landmasses into squares of 5-by-5 kilometers each and crunching the numbers for each of them.

Multiple factors influence risk assessment because the virus can spread through contact with mosquitoes in the genus Aedes, person-to-person via sexual contact, through blood transfusions and mother-to-child during pregnancy. The study focused on mosquito-driven transmission.

“For each area, we asked, ‘Is it mosquito exposure, climate or socioeconomic variables like accessibility for people to travel from areas where Zika is endemic and spread the virus upon their return?’” said Samy, who earned a doctorate in ecology and evolutionary biology at KU in May.

The findings recently were posted to the Zika Fast Track site and published in Memórias do Instituto Oswaldo Cruz, an international journal of biological and biomedical research based in Brazil, where the current outbreak has been centered since 2015.

“This map can be used by public health officials and international organizations that combat disease,” Samy said. “It’s also intended for the public. If you’re going to travel to a specific area in Brazil, and you know it’s a risk area for Zika, you should consider how to reduce the chances of transmission with clothing or insect repellant.”

Samy’s co-authors were KU’s A. Townsend Peterson, Stephanie Thomas of the University of Bayreuth in Germany, Ahmed Abd El Wahed of Georg-August University in Germany and Kevin Cohoon (a KU graduate) of the Mayo Clinic.

Samy said the course of the outbreak thus far is similar to what his team’s map predicts with a high degree of specificity.

“We have multiple dimensions in our models, and in addition we use accurate algorithms to account for bias,” he said. “So far, the pattern of spread of cases mostly conform with our model.” 

By Brendan Lynch 

This news was also featured in the Huffington Post.

Biodiversity Modeling & Policy