Tuesday, May 3, 2016

Ph.D. student, Marianna Simoes, co-mentored by Andrew Short and Town Peterson, has received the 2016 Coleopterists Society Graduate Student Research Enhancement Award to support the development of a molecular phylogeny of the Dorynotini leaf Beatles. 

Entomology
Tuesday, May 3, 2016

Ph.D. student, Marianna Simoes, co-mentored by Andrew Short and Town Peterson, has received the 2016 Coleopterists Society Graduate Student Research Enhancement Award to support the development of a molecular phylogeny of the Dorynotini leaf Beatles. 

Entomology
Tuesday, May 3, 2016

Andrew Short, assistant curator, recently received a $6600 Research Experiences for Undergraduates (REU) supplement to his NSF Career award to support undergraduate student, Alex Kohlenberg, over the summer. Kohlenberg will be revising a genus of water scavenger beetles.

Entomology
Monday, April 4, 2016

Edith Taylor, senior curator, Tom Taylor, and Collection Manager, Rudy Serbet, have learned that their research proposal "CSBR: Natural History: Securing Paleobotanical Collections at the University of Kansas: Evolution of Seed Plants and Antarctic Fossil Plants,” has been awarded $495,455 by the National Science Foundation. This will allow for new compactor shelving for the Paleobotany collection. 

Paleobotany
Monday, April 4, 2016

Edith Taylor, senior curator, Tom Taylor, and Collection Manager, Rudy Serbet, have learned that their research proposal "CSBR: Natural History: Securing Paleobotanical Collections at the University of Kansas: Evolution of Seed Plants and Antarctic Fossil Plants,” has been awarded $495,455 by the National Science Foundation. This will allow for new compactor shelving for the Paleobotany collection. 

Paleobotany
Monday, April 4, 2016

Edith Taylor, senior curator, Tom Taylor, and Collection Manager, Rudy Serbet, have learned that their research proposal "CSBR: Natural History: Securing Paleobotanical Collections at the University of Kansas: Evolution of Seed Plants and Antarctic Fossil Plants,” has been awarded $495,455 by the National Science Foundation. This will allow for new compactor shelving for the Paleobotany collection. 

Paleobotany
Tuesday, May 23, 2017

triassic fish

Graduate student, Sarah Gibson, has recently been published in PLoS with her article titled "Redescription and Phylogenetic Placement of †Hemicalypterus weir Schaeffer, 1967 (Actinopterygii, Neopterygii) from the Triassic Chinle Formation, Southwestern United States: New Insights into Morphology, Ecological Niche, and Phylogeny." In the article, Sarah reveals some of the latest insights she's discovered into the life and evolution of the Hemicalypterus, including that it evolved herbivory tens of millions of years before other fish did. To read the full article, click here. To gain even further insight, including why fish workers add a cross symbol to the beginning of extinct species names, an interview with Sarah about her PLoS article can be found here

 

Ichthyology
Thursday, July 14, 2016

Chris Beard’s article, “Out of Asia: Anthropoid Origins and the Colonization of Africa,” was recently published in the Annual Review of Anthropology. Previous research has attempted to explain the dispersed geographic distribution of anthropoid primates by hypothesizing tectonic rifts between South America and Africa as the cause, but Beard points out that those predictions conflict with the chronology and the topology of anthropoid evolution. In this article, Beard identifies and discusses biological and geological factors that support the assertion that the cause of dispersal was the crossing of marine barriers by early monkeys on natural rafts. To read the full article, please click here.

Vertebrate Paleontology
Friday, July 8, 2016

horn-fanged spider

Paul Selden, director of the Paleontological Institute, was featured on Live Science in an article by Laura Geggel titled, “99-Million-Year-Old Spider Mummy Sported Horned Fangs.” The article addresses a newly discovered strange and intriguing species of (now extinct) spider, spiders which happened to boast hard plates of armor on their bodies as well as fangs with horns. Selden and his colleagues have settled on the following name for the new species: Electroblemma bifida, which roughly translated from Greek means “amber appearance.” To read more about Selden’s research, click here

Photo by Paul Selden

Paleontological Institute
Wednesday, June 15, 2016

venom fish

Upon hearing the word “venom,” most people probably think of a snake’s fang.

But the ability to produce and inject toxins into another animal is so useful, it has evolved multiple times in creatures ranging from jellyfishes to spiders, shrews to the male platypus.

Now, a paper appearing this week in the journal Integrative and Comparative Biology catalogs instances of venomous aquatic life, for the first time showing that venom has evolved 18 separate times in fresh and saltwater fishes.

Among the paper’s other findings:

venom fish 3In contrast to squamates like lizards and snakes, very few fishes have evolved venomous fangs or teeth
The predominant function for venom in fishes is defense rather than offense
Venom in freshwater is dominated by catfishes, as opposed to marine environments where it is widespread across many groups
It is surprising how comparatively common venom is in deep-sea sharks (30 percent of venomous sharks) compared to deep-sea bony fishes (5 percent of venomous bony fishes)
“For the first time ever, we looked at the evolution of venom across all fishes,” said lead author William Leo Smith, assistant curator at the University of Kansas Biodiversity Institute. “Nobody had attempted to look across all fishes. Nobody had done sharks or included eels. Nobody had looked at them all and included all fishes in an evolutionary tree at the same time.”

Smith and his KU co-authors — undergraduate student Jennifer Stern and Matthew Girard, a graduate student in the Department of Ecology and Evolutionary Biology — along with Matthew Davis of St. Cloud State University, spent years combing medical reports of people exposed to venom from fishes. Then the team assembled the family trees for those fish, using specimens from natural history museums to trace evidence of venom through closely related species.

“We figured out what a venom gland looks like in a known-venomous animal and what it looks like in all related groups,” the KU researcher said. “For instance, relatives of yellowtail that people eat as sushi were reported as venomous, and we were able to find venom glands in their spines.”

According to Smith, the 18 independent evolutions of venom each pose an opportunity for drug makers to derive therapies for a host of human ailments. venom fish 2

“Fish venoms are often super complicated, big molecules that have big impact,” he said. “Venom can have impacts on blood pressure, cause local necrosis, breakdown of tissue and blood, and hemolytic activity — it prevents clotting to spread venom around prey. Venom is a neurotoxin. The average response is incredible pain and swelling.”

According to Smith, because fishes have to live with their own venom, “there might be helper molecules that protect the fishes themselves and help them survive.” He said these also could have therapeutic value to people.

Smith said that up to 95 percent of venomous fish use their toxins defensively, usually gathering venom within their dorsal spines, where it can be deployed in case the fish is crushed or another fish attempts to swallow it.

Some, however, use venom offensively to debilitate their prey and can sometimes injure people.

“Invasive lionfishes will orient themselves in a strange way and ram themselves at people,” Smith said. “One-jawed eels have lost the upper jaw, but with the lower one they slam prey up into a modified fang. Their venom gland sits right above the brain.”

Smith studies biological traits — like the ability to make venom, fly or produce light — that have evolved separately in different lines of species. He said venom is distinct from poison because it typically won’t harm an organism ingesting it; venom works when it comes into contact externally, something Smith himself has experienced when working in the pet trade (where most venom U.S. exposure occurs), cleaning his own fish tank or collecting fishes during fieldwork.

“I’ve never been offensively stung,” Smith said. “The problem is they hide in the rocks in your fish tank, and you move the rocks. Or, when you’re collecting fishes. You’re out there in the water with a mesh bag and a spear, trying to get venomous things, and then a wave hits you and drives the bag of spines into your chest, and you say, ‘Ah I regret that.’” 

By Brendan Lynch

Photo 1: The Venomous Blue Tang (Paracanthurus), who stars in the movie “Finding Dory.”

Photo 2: The Venomous Lipstick Tang (Naso), which is popular in the aquarium trade.

Photo 3: The last thing many fishes see, a head-on view of a Venomous Devil Firefish (Pterois).

All photos courtesy of William Leo Smith